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Propagators are one of the fundamental objects in Quantum Field Theory (QFT). Mathe-
matically, it is defined by fundamental solutions to the Klein-Gordon equation such as those
given by the advanced/retarded propagators and the Feynman/anti-Feynman propagators. The
existence of the advanced/retarded propagators is classically known. These are constructed by
solving a Cauchy problem and defined for globally hyperbolic spacetimes. On the other hand,
how the Feynman/anti-Feynman propagators are generalized is non-trivial and these existence
problem is global in nature and is more complicated. See the introductions of [1], [2], [3], [5], [6]
and [7].

The massive Feynman propagator (m > 0) in exact Minkowski spacetime is given by

(∂2
t −∆y +m2 − i0)−1.(1)

More precisely, its integral kernel (Green function) (∂2
t −∆y +m2 − i0)−1(x, x′) is given by

(∂2
t −∆y +m2 − i0)−1(x, x′) = lim

ε→0, ε>0

1

(2π)n+1

∫
Rn+1

ei(x−x′)·ξ

−τ2 + |η|2 +m2 − iε
dξ,

where we write ξ = (τ, η) ∈ R×Rn. This formula is defined by using the Fourier analysis and the
distribution theory, so how Feynman propagators are defined in more general curved spacetimes
is non-trivial from this formula.

Duistermaat-Hörmander [4] gave a precise definition of Feynman propagator in terms of the
wavefront set and showed the existence of Feynman parametrices (inverses up to smoothing
errors) under general settings. Recently, actual inverses (Feynman propagators) have been
constructed on various spacetimes by using the scattering theory or the microlocal theory ([1],
[2], [3], [5], [6], [7] and [11]). However, their constructions differ from each other and relationship
between such Feynman propagators and the formula (1) had not been addressed. In this study,
following a program of [1], [3], we show that the (anti-)Feynman propagator constructed in [6]
and [7] coincides with a limit of resolvent as (1) on curved spacetimes which are close to the
Minkowski spacetime near spacetime infinity.

Now we state our main theorem. Let g0 be the Minkowski metric on Rn+1
x = Rt × Rn

y and

g−1
0 be its dual metric:

g0 = −dx21 + dx22 + ...+ dx21+n, g−1
0 = −∂2

x1
+ ∂2

x2
+ ...+ ∂2

x1+n
= (gij0 )

n
i,j=1.

We write ⟨x⟩ = (1 + |x|2)
1
2 and introduce the function space

Sk(Rn+1) := {a ∈ C∞(Rn+1) | |∂α
x a(x)| ≤ C⟨x⟩k−|α|}, k ∈ R.

Assumption 1. A Lorentzian metric g on Rn+1 satisfies the following conditions: The inverse

matrix g−1(x) = (gjk(x))nj,k=1 of g(x) satisfies gjk − gjk0 ∈ S−µ(Rn+1) for some µ > 0.

Assumption 2 (Null non-trapping condition). All non-constant null geodesics escape to the
spacetime infinity.

Assumption 3. There exists a time function t̃ such that t̃− t ∈ C∞
c (Rn+1).

It is shown in [8], [9] and [11] that P := −□g is essentially self-adjoint on C∞
c (Rn+1) under

Assumptions 1 and 2. We denote the unique self-adjoint extension by the same symbol P .
Moreover, we set L2,s(Rn+1) := ⟨x⟩−sL2(Rn).
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Theorem 1. [10] We suppose Assumptions 1 and 2.
(i) Let s > 1

2 and λ ∈ R \ {0}. Then the limits

(P − λ∓ i0)−1 := lim
ε→0, ε>0

(P − λ∓ iε)−1

exist in B(L2,s(Rn+1), L2,−s(Rn+1)).
(ii) In addition, we suppose Assumption 3, µ > 1 and λ = m2 > 0. The operator (P+m2−i0)−1

coincides with the (anti-)Feynman propagator defined in [6] and [7]. In particular, (P+m2−i0)−1

is actually a Feynman propagator in the definition of Duistermaat-Hörmander [4].

Remark 1. The convention of the Feynman/anti-Feynman propagators in [6] and [7] are dif-
ferent from ones in physics books. Here we follow the convention in physics books.

Remark 2. A weaker statement of (i) is also proved in [11] by a different method but under a
very short-range condition.

The proof of the part (i) is essentially due to the Mourre theory, which is commonly used in
the scattering theory. A main difficulty here is due to the lack of ellipticity of P = −□g.

To describe the key idea of the proof of the part (ii), we rewrite (1) as

(∂2
t −∆y +m2 − i0)−1f(t, y) =

i

2
√
−∆y +m2

∫
R
e−i|t−t′|

√
−∆y+m2

f(t′, y)dt

for (t, y) ∈ R× Rn. If f ∈ C∞
c (Rn+1), then we write

(∂2
t −∆y +m2 − i0)−1f(t, y) =

{
e−it

√
−∆y+m2

g+(t, y) t >> 1

eit
√

−∆y+m2
g−(t, y) t << −1

for some function g± and it satisfies (Dt ±
√
−∆y +m2)u = 0 for ±t >> 1. We regard this

equation as an analogue of Sommerfeld’s radiation condition (∂r − i
√
λ)u = o(|x|−

n−1
2 ) for the

Helmholtz equation (−∆ − λ)u = 0 on Rn. This observation is more or less justified for more
general setting by using the microlocal analysis. Moreover, uniqueness of solutions under the
radiation condition yields an identification of Feynman propagators (proof of the part (ii)).
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